A Positive Semidefinite Approximation of the Symmetric Traveling Salesman Polytope
نویسنده
چکیده
For a convex body B in a vector space V , we construct its approximation Pk, k = 1, 2, . . . using an intersection of a cone of positive semidefinite quadratic forms with an affine subspace. We show that Pk is contained in B for each k. When B is the Symmetric Traveling Salesman Polytope on n cities Tn, we show that the scaling of Pk by n k + O ` 1 n ́ contains Tn for k ≤ b 2 c. Membership for Pk is computable in time polynomial in n (of degree linear in k). We also discuss facets of Tn that lie on the boundary of Pk and we use eigenvalues to evaluate our bounds.
منابع مشابه
On Semidefinite Programming Relaxations of the Traveling Salesman Problem
We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP), that may be obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in the paper: [D. Cvetković, M. Cangalović and V. Kovačević-Vujčić. Semidefinite Programming Methods for the Symmetric Traveling Salesman...
متن کاملErratum: On Semidefinite Programming Relaxations of the Traveling Salesman Problem
We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP), that may be obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in the paper: [D. Cvetković, M. Cangalović and V. Kovačević-Vujčić. Semidefinite Programming Methods for the Symmetric Traveling Salesman...
متن کاملOn the Parsimonious Property of Relaxations of the Symmetric Traveling Salesman Polytope
We relate the parsimonious property of relaxations of the Symmetric Traveling Salesman Polytope to a connectivity property of the ridge graph of the Graphical Traveling Salesman Polyhedron. This relationship is quite surprising. The proof is elegant and geometric: it makes use of recent results on “flattening” parts of the boundary complex of the polar of the Graphical Traveling Salesman Polyhe...
متن کاملThe Graphical Traveling Salesman Polyhedron Is the Intersection of the Positive Orthant with the Minkowski Sum of the Symmetric Traveling Salesman Polytope and the Polar of the Metric Cone
In this short communication, we observe that the Graphical Traveling Salesman Polyhedron is the intersection of the positive orthant with the Minkowski sum of the Symmetric Traveling Salesman Polytope and the polar of the metric cone. This follows trivially from known facts. There are two reasons why we find this observation worth communicating none-the-less: It is very surprising; it helps to ...
متن کاملA comparison of lower bounds for the symmetric circulant traveling salesman problem
When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The complexity of the SCTSP is open, but conjectured to be NP-hard, and we compare different lower bounds on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 38 شماره
صفحات -
تاریخ انتشار 2007